

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 109-112

Tetrahedron Letters

A unique 'ON–OFF–ON' switch with two perturbations at two different concentrations of Ag⁺

Prabhpreet Singh and Subodh Kumar*

Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India

Received 23 July 2005; revised 17 October 2005; accepted 26 October 2005 Available online 11 November 2005

Abstract—The dipod 1,2-bis(8-quinolinoxymethyl)benzene **3** and tetrapod 1,2,4,5-tetrakis(8-quinolinoxymethyl)benzene **4** show two perturbations in fluorescence with Ag⁺, (i) fluorescence quenching with <1.0 equiv of AgNO₃ at λ_{max} 395 nm and (ii) fluorescence enhancement at λ_{max} 500 nm with >3 equiv of AgNO₃. This 'ON–OFF–ON' switching of **3** and **4** in comparison with simultaneous fluorescence quenching and enhancement in the case of 8-methoxyquinoline **1** and the tripod 1,3,5-trimethyl-2,4,6-tris(8-quinolinoxymethyl)benzene **2** point to the unique role of molecular architectures arising due to the number and spatial positions of quinoline units in the fluorescence behaviour of an 8-alkoxyquinoline moiety towards Ag⁺. © 2005 Elsevier Ltd. All rights reserved.

The design and synthesis of target selective receptors with luminescent signalling systems for direct measurement of changes in emission intensities, wavelength or excited life time, arising due to perturbation upon ion or molecular recognition, have attained a central position in supramolecular chemistry.^{1,2}

These recognition phenomena depend primarily on multiple host–guest interactions. Locking of conformations of both the host and the guest makes negative contributions to the total free energies of the system.³ So, in addition to the complementarity of binding sites, the spatial placement of subunits⁴ constitutes the major criteria for designing new receptors.

8-Hydroxyquinoline and its derivatives are known to be the best chelators after EDTA and its derivatives, due to their guest modulated chromogenic and fluorescent behaviour. Accordingly, they have attained prime significance and have been used in chromatography,⁵ detection of metal ions,⁶ in organic light emitting diode devices⁷ and in electrochemiluminescence,⁸ etc. In the case of planar platforms, in all investigations, the contribution of molecular architectures arising due to the placement of two or three subunits at 1,3- or 1,3,5-positions on a benzene ring has been well studied in molecular recognition.⁹ However, the supramolecular behaviour of receptors possessing two and four such functional groups placed symmetrically at 1,2-, or 1,2,4,5-positions of a benzene ring has been scarcely studied.¹⁰

In the present work, we report that the sterically crowded 1,2-dipod **3** and 1,2,4,5-tetrapod **4** (Fig. 1) undergo fluorescence quenching with <1.0 equiv of Ag⁺ (λ_{max} 350 nm) and fluorescence enhancement (λ_{max} 500 nm) with >3 equiv of Ag⁺. This provides a unique

Figure 1. Structures of podands 1-4.

Keywords: Hydroxyquinoline; Tetrapod; Fluorescence; Selective perturbation.

^{*}Corresponding author. Tel.: +91 0183 2258802; fax: +91 0183 2258820; e-mail: Subodh_gndu@yahoo.co.in

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.10.127

possibility for the measurement of two different concentrations of Ag^+ with one compound due to two perturbations at different wavelengths. This points to the role of the spatial architectures of 8-hydroxyquinoline moieties, placed at different positions on a benzene platform, on their Ag^+ modulated fluorescence behaviour.

1,2,4,5-Tetrakis(8-quinolinoxymethyl)benzene 4^{11} and 1,2-bis(8-quinolinoxymethyl)benzene 3^{12} were prepared by refluxing 8-hydroxyquinoline with 1,2,4,5-tetrakis(bromomethyl)benzene¹³ and 1,2-bis(bromomethyl)benzene¹⁴ under phase transfer catalyzed conditions. 8-Methoxyquinoline 1 and tripod 2 were prepared by the reported procedures.¹⁵ The assignment of ¹H signals in 3 and 4 were made from decoupling and ¹H–¹H COSY spectral data.

Receptors 1–4 (10 μ M, CH₃CN) exhibit a broad absorption band at λ_{max} 305 nm and on excitation at λ_{max} 305 nm exhibit fluorescence at λ_{max} 390 \pm 5 nm, which is typical of 8-hydroxyquinolines. The fluorescence maxima of 1–4 do not undergo any change within λ_{ex} 250–350 nm. Also, at least in the concentration range 1–10 μ M, the linear increase of fluorescence with increase in concentration indicates that 1–4 are not susceptible to self-quenching or to aggregation processes. In the present work, all studies were performed using λ_{ex} 345 nm.

A solution of 8-methoxyquinoline 1 (10 μ M, CH₃CN), on addition of AgNO₃, underwent simultaneous quenching at λ_{max} 395 nm and enhancement at λ_{max} 500 nm, up to 100 μ M of AgNO₃, and then a plateau was achieved at λ_{max} 395 nm. The spectral fitting of the data shows that 1 forms Ag⁺·1 and 2Ag⁺·1 complexes in acetonitrile with values for log $\beta_{ML} = 6.5 \pm 0.3$ and log $\beta_{M_2L} = 11.0 \pm 0.3$. With 1.0 equiv of AgNO₃ formation of the Ag⁺·1 complex (81%) is preferred but with 10 equiv of AgNO₃, the formation of the 2Ag⁺·1 complex (72%) is predominant over Ag⁺·1 complex (28%).

Similarly, a solution of tripod **2** (1 μ M, CH₃CN) showed simultaneous fluorescence quenching at λ_{max} 395 nm and enhancement at λ_{max} 500 nm on addition of AgNO₃. The spectral fitting of the data shows the formation of 2Ag⁺·**2** (log $\beta_{M_2L} = 10.9 \pm 0.1$) and 3Ag⁺·**2** (log $\beta_{M_3L} = 15.3 \pm$ 0.2) complexes (Table 1). With 10 equiv of AgNO₃ mainly (L-M₂L-M₃L = 12:76:12) M₂L exists, which on increasing Ag⁺ concentration shifts towards M₃L. With 100 equiv of AgNO₃, the solution consists of nearly 60% M₃L and 40% M₂L.

A solution of dipod 3 on excitation at λ_{ex} 345 nm showed a gradual decrease in fluorescence on addition of

Table 1. The $\log\beta_{M_xL}$ values of Ag^+ complexes with podands 1–4

Podand	$\log \beta_{ML}$	$\log\beta_{M_2L}$	$\log\beta_{M_3L}$	$\log\beta_{M_4L}$
1	6.5 ± 0.3	11.0 ± 0.3		
2		10.9 ± 0.1	15.3 ± 0.2	
3	6.3 ± 0.2	9.5 ± 0.2		
4	6.8 ± 0.2	12.2 ± 0.3		17.3 ± 0.6

Figure 2. The effect of Ag^+ on the fluorescence behaviour of dipod 3 (10 μ M).

AgNO₃, which gradually increased on increasing the concentration of AgNO₃ (Fig. 2). A plot of concentration of AgNO₃ versus fluorescence at 385 nm shows a linear decrease with up to 50 μ M AgNO₃ (5 equiv) and then a plateau is achieved. During addition of AgNO₃, between 10 and 30 μ M (1–3 equiv), no significant change in fluorescence at 395 or 500 nm was observed. However, on further addition of AgNO₃, a fluorescence band at λ_{max} 500 nm appeared and its intensity gradually increased with an increase in the concentration of AgNO₃.

The spectral fitting of the titration data of dipod **3** with AgNO₃ shows the formation of ML and M₂L complexes with $\log \beta_{ML} = 6.3 \pm 0.2$ and $\log \beta_{M_2L} = 9.5 \pm 0.2$. Analysis of the distribution of different species showed that their concentration varied significantly with the concentration of Ag⁺. In a 1:2 mixture of **3** and AgNO₃, an almost maximum concentration of a 1:1 complex (94%) was observed. At this concentration, nearly 1% of a 2:1 2AgNO₃ dipod **3** was observed. On further increasing the concentration of Ag⁺ to 1000 μ M, the formation of M₂L increased to 60% along with 40% of the ML complex.

A solution of tetrapod 4 (10 μ M, CH₃CN), on addition of AgNO₃ showed fluorescence quenching, which gradually increased with increasing concentration of AgNO₃. A plot of concentration of AgNO₃ versus fluorescence at 395 nm showed a linear decrease with up to $15 \,\mu M$ $AgNO_3$ (1.5 equiv) and then a plateau was achieved. On addition of further AgNO₃, a new fluorescence band emerged at λ_{max} 495 nm. The fluorescence intensity at 495 nm gradually increased with increased concentration of $AgNO_3$. The spectral fitting of the data showed the formation of ML, M₂L and M₄L complexes (Figs. 3 and 4) with $\log \beta_{ML} = 6.8 \pm 0.2$, $\log \beta_{M_2L} = 12.2 \pm 0.3$, and log $\beta_{M_4L} = 17.3 \pm 0.6$. Analysis of the distribution of the different species showed that their concentration varied significantly with the concentration of Ag^{-} . In a 1:1 mixture of 4 and AgNO₃, an almost maximum concentration of a 1:1 complex (>75%) is observed. At this concentration, nearly 10% of the 2:1 2AgNO3 tetrapod 4 is formed. On further increasing the concentration of

Figure 3. The curve fitting of fluorescence spectral data of 4 at 395 nm on addition of AgNO₃: (O) experimental points, (--) fitted line.

Figure 4. The curve fitting of fluorescence spectral data of 4 (10 μ M in CH₃CN) at 495 nm on addition of AgNO₃: (0) experimental points, (--) fitted line.

Ag⁺ to 200 μ M, the formation of M₂L increases to 97% along with <1% of a 4:1 4AgNO₃·tetrapod 4 complex. Even at 1000 μ M AgNO₃, the 4:1 4AgNO₃·tetrapod 4 complex is formed to 11% extent only along with 89% of a 2:1 complex. Due to the existence of a number of different stoichiometric complexes of 4 with Ag⁺, isosbestic points were not observed.

In summary, 1,2-dipod 3 and 1,2,4,5-tetrapod 4, on addition of <1 equiv of AgNO₃ undergo 'switch off' at λ_{max} 395 nm, then between 10 and 30 μ M do not show any significant change in fluorescence intensities, and then at $>30 \,\mu M$ AgNO₃ concentrations 'switch on' of the fluorescence with a red shift to 495 nm is observed. The lack of such delayed fluorescence enhancement with the addition of $AgNO_3$ to the solutions of monopod 1 and 1,3,5-tripod 2 suggests that in the case of 3 and 4, the placement of the quinoline units closer to each other leads to more crowded architectures, which inhibit some of the interaction modes of quinoline with Ag⁺ but, later, with the availability of higher concentrations of AgNO₃, delayed fluorescence reappears. This phenomenon enables estimation of AgNO₃ between two different concentration ranges with the same molecule.

A plot of the number of quinoline units/Ag⁺ cation versus concentration of Ag⁺ shows that both 3 and 4

Figure 5. The plot of number of quinoline units per Ag^+ in podands 1–4.

organize higher numbers of quinoline units around Ag^+ than in the case of 8-methoxyquinoline 1 and tripod 2 (Fig. 5). At less than 5 equiv of AgNO₃, the tetrapod 4 shows significantly higher numbers of quinoline units around Ag^+ than in the case of 3, which in turn shows a higher order of quinolines per Ag^+ than in the cases of 1 and 2. All these results clearly point to the organization of four quinoline units around Ag^+ in the case of 4, at least at <5 equiv of Ag^+ .

Therefore, podands 1-4 exhibit different fluorescence perturbations with Ag^+ and point to the role of the spatial placement of quinoline moieties in achieving different modulations.

Acknowledgements

We thank UGC and DST, New Delhi, for financial assistance; DST, New Delhi for the FIST programme and CDRI Lucknow for FAB Mass spectra.

References and notes

- (a) Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515–1566; (b) Rurack, K.; Resch-Genger, U. Chem. Soc. Rev. 2002, 31, 116–127; (c) Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; McClenaghan, N. D.; Roiroan, J. Coord. Chem. Rev. 1999, 186, 297–306; (d) Lavigne, J. J.; Anslyn, E. V. Angew. Chem., Int. Ed. 2001, 40, 3118–3130; (e) Fabrizzi, L.; Licchelli, M.; Rabaioli, G.; Taglietti, A. F. Coord. Chem. Rev. 2000, 205, 85–108; (f) Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. Coord. Chem. Rev. 2000, 205, 41–57; (g) Amendola, V.; Fabrizzi, L.; Licchelli, M.; Mangano, C.; Pallavicini, P.; Parodi, L.; Poggi, A. Coord. Chem. Rev. 1999, 190–192, 649–669.
- (a) Gunnlaugsson, T.; Lee, T. C.; Parkesh, R. Org. Biomol. Chem. 2003, 1, 3265–3267; (b) Guo, X.; Qian, X.; Jia, L. J. Am. Chem. Soc. 2004, 126, 2272–2273; (c) Resendiz, M. J. E.; Noveron, J. C.; Disteldorf, H.; Fischer, S.; Stang, P. J. Org. Lett. 2004, 6, 651–653; (d) Arimori, S.; Phillips, M. D.; James, T. D. Tetrahedron Lett. 2004, 45, 1539–1542; (e) Gao, X.; Zhang, Y.; Wang, B. Org. Lett. 2003, 5, 4615– 4618; (f) Kang, J.; Choi, M.; Kwon, J. Y.; Lee, E. Y.; Yoon, J. J. Org. Chem. 2002, 67, 4384–4386; (g) Moon, S.

Y.; Cha, N. R.; Kim, Y. H.; Chang, S.-K. J. Org. Chem. 2004, 69, 181–183; (h) Bu, J.-H.; Zheng, Q.-Y.; Chen, C.-F.; Huang, Z.-T. Org. Lett. 2004, 6, 3301–3303; (i) Tumambac, G. E.; Rosencrance, C. M.; Wolf, C. Tetrahedron 2004, 60, 11293–11297.

- (a) Williams, D. H.; Westwell, M. S. Chem. Soc. Rev. 1998, 27, 57–63; (b) Peterson, B. R.; Wallimann, P.; Carcanague, D. R.; Diederich, F. Tetrahedron 1995, 51, 401–421; (c) Searle, M. S.; Westwell, M. S.; Williams, D. H. J. Chem. Soc., Perkin Trans. 2 1995, 141–151.
- (a) Cram, D. J. Angew. Chem., Int. Ed. Engl. 1986, 25, 1039–1057; (b) Cram, D. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 1009–1020.
- (a) Saroka, K.; Vithanage, R. S.; Phillips, D. A.; Walker, B.; Dasgupta, P. K. *Anal. Chem.* **1987**, *59*, 629–636; (b) Marshall, M. A.; Mottola, H. A. *Anal Chem.* **1985**, *57*, 375–376; (c) Lucy, C. A.; Liwen, Y. J. Chromatogr., A **1994**, *671*, 121–129; (d) De Armas, G.; Miro, M.; Cladera, A.; Estela, J. M.; Cerda, V. *Anal. Chim. Acta* **2002**, *455*, 149–157.
- 6. (a) Bronson, R. T.; Montalti, M.; Prodi, L.; Zaccheroni, N.; Lamb, R. D.; Dalley, N. K.; Izatt, R. M.; Bradshaw, J. S.; Savage, P. B. Tetrahedron 2004, 60, 11139-11144; (b) Youk, J.-S.; Kim, Y. H.; Kim, E.-J.; Youn, N. J.; Chang, S.-K. Bull. Korean Chem. Soc. 2004, 25, 869-872; (c) Bronson, R. T.; Bradshaw, J. S.; Savage, P. B.; Fuangswasdi, S.; Lee, S. C.; Krakowiak, K. E.; Izatt, R. M. J. Org. Chem. 2001, 66, 4752-4758; (d) Kawakami, J.; Bronson, R. T.; Xue, G.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. J. Supramol. Chem. 2001, 1, 221-227; (e) Xue, G.; Bradshaw, J. S.; Dalley, N. K.; Savage, P. B.; Krakowiak, K. E.; Izatt, R. M.; Prodi, L.; Montalti, M.; Zaccheroni, N. Tetrahedron 2001, 57, 7623-7628; (f) Xue, G.; Bradshaw, J. S.; Song, H.; Bronson, R. T.; Savage, P. B.; Krakowiak, K. E.; Izatt, R. M.; Prodi, L.; Montalti, M.; Zaccheroni, N. Tetrahedron 2001, 57, 87-91; (g) Bordunov, A. V.; Bradshaw, J. S.; Zhang, X. X.; Dalley, N. K.; Kou, X.; Izatt, R. M. Inorg. Chem. 1996, 35, 7229-7240; (h) Zhang, X. X.; Bordunov, A. V.; Bradshaw, J. S.; Dalley, N. K.; Kou, X.; Izatt, R. M. J. Am. Chem. Soc. 1995, 117, 11507-11511.
- (a) Wang, S. Coord. Chem. Rev. 2001, 215, 79–98; (b) Chen, C. H.; Shi, J. Coord. Chem. Rev. 1998, 171, 161–174.
- (a) Gross, E. M.; Anderson, J. D.; Slaterbeck, A. F.; Thayumanavan, S.; Barlow, S.; Zhang, Y.; Marder, S. R.; Hall, H. K.; Flore, N. M.; Wang, J.-F.; Mash, E. A.; Armstrong, N. R.; Wightman, R. M. J. Am. Chem. Soc. 2000, 122, 4972–4979; (b) Muegge, B. D.; Brooks, S.; Richter, M. M. Anal. Chem. 2003, 75, 1102–1105.
- For a benzene-based tripodal receptor for cations and anions see selected examples: (a) Walsdorff, C.; Saak, W.; Pohl, S. J. Chem. Soc., Dalton Trans. 1997, 1857–1861; (b) Ahn, K. H.; Ku, H.-Y.; Kim, Y.; Kim, S.-G.; Kim, Y. K.; Son, H. S.; Ku, J. K. Org. Lett. 2003, 5, 1419–1422; (c) Nguyen, B. T.; Wiskur, S. L.; Anslyn, E. V. Org. Lett. 2004, 6, 2499–2501; (d) Simaan, S.; Siegel, J. S.; Biali, S. E. J. Org. Chem. 2003, 68, 3699–3701; (e) Seong, H. R.; Kim, D.-S.; Kim, S.-G.; Choi, H.-J.; Ahn, K. H. Tetrahedron Lett. 2004, 45, 723–727; (f) Amendola, V.; Fabbrizzi, L.;

Monzani, E. *Chem. Eur. J.* **2004**, *10*, 76–82; (g) Abe, H.; Aoyagi, Y.; Inouye, M. *Org. Lett.* **2005**, *7*, 59–61; (h) Kim, T. W.; Yoon, H. Y.; Park, J.-H.; Kwon, O.-H.; Jang, D.-J.; Hong, J.-I. *Org. Lett.* **2005**, *7*, 111–114.

- For 1,2,4,5-tetrakis(phenylethynyl)benzene systems see selected examples: (a) Marsden, J. A.; Miller, J. J.; Haley, M. M. Angew. Chem., Int. Ed. 2004, 43, 1694–1697; (b) Iyoda, M.; Sirinintasak, S.; Nishiyama, Y.; Vorasingha, A.; Sultana, F.; Nakao, K.; Kuwatani, Y.; Matsuyama, H.; Yoshida, M.; Miyake, Y. Synthesis 2004, 1527–1531; (c) Kondo, K.; Yasuda, S.; Sakaguchi, T.; Miya, M. J. Chem. Soc., Chem. Commun. 1995, 55–56.
- 11. A solution of 8-hydroxyquinoline (850 mg, 5.5 mmol), NaH (pre-washed with hexane) (275 mg, 11.4 mmol) and tetrabutylammonium hydrogen sulfate (20 mg) (catalyst) in DMF (30 ml) was stirred at 80 °C. After 30 min, 1,2,4,5tetrakis(bromomethyl)benzene (500 mg, 1.1 mmol) was added and stirring was continued at 80 °C. After completion of the reaction (TLC, 24 h), the solid residue was filtered off and was washed with ethyl acetate. The combined filtrate was evaporated under vacuum and the solid residue was purified by column chromatography over silica-gel (60–120 mesh) using a mixture of CH₂Cl₂-ethyl acetate-MeOH (80:17:3, v/v) to obtain pure 4, as a white solid (40%). Mp 233-237 °C (CH₃CN-CHCl₃), FAB mass m/z 707 (M⁺+H); ¹H NMR (CDCl₃) (300 MHz): δ 5.62 (s, $4 \times CH_2$, 8H), 7.00 (d, J = 7.2 Hz, 4H, $4 \times HQ-H7$), 7.19– 7.30 (m, 8H, 4×HQ-H6, 5), 7.37 (dd, $J_1 = 8.1$ Hz, $J_2 = 4.2$ Hz, 4H, 4×HQ-H3), 7.80 (s, 2H, ArH), 8.06 (d, J = 6.9 Hz, 4H, 4×HQ-H4), 8.86 (d, J = 2.7 Hz, 4H, 4×HQ-H2); ¹³C NMR (CDCl₃–DMSO- d_6) (75 MHz) (normal/DEPT-135): δ 67.36 (-ve, CH₂), 112.5 (+ve, ArCH), 119.0 (+ve, ArCH), 119.1 (ab, ArC), 121.1 (+ve, ArCH), 128.2 (ab, ArC), 128.3 (+ve, ArCH), 128.5 (+ve, ArCH), 133.4 (ab, ArC), 143.2 (+ve, ArCH), 144.5 (+ve, ArCH), 147.2 (ab, ArC). Found: C, 77.93; H, 4.70; N, 7.90%. C₄₆H₃₄N₄O₄ requires C, 78.17; H, 4.85; N, 7.93%.
- 12. The reaction of 8-hydroxyquinoline with 1,2-bis(bromomethyl)benzene using the above procedure provided **3** (48%); as a white solid, mp 112–115 °C (CH₃CN), FAB mass *m/z* 392 (M⁺+H): ¹H NMR (CDCl₃) (300 MHz): δ 5.62 (s, 2×OCH₂, 4H), 7.12 (dd, $J_1 = 5.8$ Hz, $J_2 = 3.0$ Hz, 2H, ArH), 7.27–7.34 (m, 6H, 2×HQ-H6, 5, 7), 7.39 (dd, $J_1 = 8.4$ Hz, $J_2 = 3.9$ Hz, 2H, 2×HQ-H3), 7.59 (dd, $J_1 = 5.7$ Hz, $J_2 = 3.3$ Hz, 2H, ArH), 8.08 (dd, $J_1 =$ 8.4 Hz, $J_2 = 1.8$ Hz, 2H, 2×HQ-H4), 8.92 (dd, $J_1 = 4.2$ Hz, $J_2 = 1.8$ Hz, 2H, 2×HQ-H4), 8.92 (dd, $J_1 = 4.2$ Hz, $J_2 = 1.8$ Hz, 2H, 2×HQ-H2); ¹³C NMR (CDCl₃) (75 MHz) (normal/DEPT-135): δ 69.1 (–ve, CH₂), 110.0 (+ve, ArCH), 119.8 (+ve, ArCH), 121.5 (+ve, ArCH), 126.5 (+ve, ArCH), 128.2 (+ve, ArCH), 128.7 (+ve, ArCH), 129.4 (ab, ArC), 134.9 (ab, ArC), 135.7 (+ve, ArCH), 140.5 (ab, ArC), 149.2 (+ve, ArCH), 154.2 (ab, ArC). Found: C, 79.30; H, 5.40; N, 6.90%. C₂₆H₂₀N₂O₂ requires C, 79.57; H, 5.14; N, 7.14%.
- 13. Stapler, J. T.; Bornstein, J. J. Heterocycl. Chem. 1973, 10, 983–988.
- 14. Wilhelm, W. J. Org. Chem. 1952, 17, 523-528.
- 15. Kumar, S.; Kaur, S.; Singh, G. Supramol. Chem. 2003, 15, 65–67.